Impact of virus surface characteristics on removal mechanisms within membrane bioreactors.

نویسندگان

  • Rabia M Chaudhry
  • Ryan W Holloway
  • Tzahi Y Cath
  • Kara L Nelson
چکیده

In this study we investigated the removal of viruses with similar size and shape but with different external surface capsid proteins by a bench-scale membrane bioreactor (MBR). The goal was to determine which virus removal mechanisms (retention by clean backwashed membrane, retention by cake layer, attachment to biomass, and inactivation) were most impacted by differences in the virus surface properties. Seven bench-scale MBR experiments were performed using mixed liquor wastewater sludge that was seeded with three lab-cultured bacteriophages with icosahedral capsids of ∼30 nm diameter (MS2, phiX174, and fr). The operating conditions were designed to simulate those at a reference, full-scale MBR facility. The virus removal mechanism most affected by virus type was attachment to biomass (removals of 0.2 log for MS2, 1.2 log for phiX174, and 3 log for fr). These differences in removal could not be explained by electrostatic interactions, as the three viruses had similar net negative charge when suspended in MBR permeate. Removals by the clean backwashed membrane (less than 1 log) and cake layer (∼0.6 log) were similar for the three viruses. A comparison between the clean membrane removals seen at the bench-scale using a virgin membrane (∼1 log), and the full-scale using 10-year old membranes (∼2-3 logs) suggests that irreversible fouling, accumulated on the membrane over years of operation that cannot be removed by cleaning, also contributes towards virus removal. This study enhances the current mechanistic understanding of virus removal in MBRs and will contribute to more reliable treatment for water reuse applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Sodium Tripolyphosphate Concentration on Characteristics and Performance of Polyamide Thin Layer Membrane in Cu (II) Removal

In this work, the effect of presence of the sodium tripolyphosphate (STPP), as an inorganic salt, on improving the performance of polyamide (PA) thin layer membranes has been studied. Characterization analyses confirmed the presence of the salt on the whole surface structure of the thin layer. Different salt loadings resulted in different fluxes and Cu (II) rejections. The thin layer containing...

متن کامل

Effects of salinity build-up on biomass characteristics and trace organic chemical removal: implications on the development of high retention membrane bioreactors.

This study investigated the impact of salinity build-up on the performance of membrane bioreactor (MBR), specifically in terms of the removal and fate of trace organic chemicals (TrOCs), nutrient removal, and biomass characteristics. Stepwise increase of the influent salinity, simulating salinity build-up in high retention MBRs, adversely affected the metabolic activity in the bioreactor, there...

متن کامل

Novel application of oxygen-transferring membranes to improve anaerobic wastewater treatment.

Anaerobic biological wastewater treatment has numerous advantages over conventional aerobic processes; anaerobic biotechnologies, however, still have a reputation for low-quality effluents and operational instabilities. In this study, anaerobic bioreactors were augmented with an oxygen-transferring membrane to improve treatment performance. Two anaerobic bioreactors were fed a synthetic high-st...

متن کامل

Enhanced Biological Phosphorus Removal within Membrane Bioreactors

Several Membrane Bioreactor (MBR) facilities have been constructed with the intent of providing Enhanced Biological Phosphorus Removal (EBPR), and several additional such plants are being designed and constructed. Full-scale plant information is now available for process designers to better understand the unique design and operating issues associated with the incorporation of EBPR designs in MB...

متن کامل

Roles of polyurethane foam in aerobic moving and fixed bed bioreactors.

The aim of this study was to investigate the performance of sponge as an active mobile carrier for attached-growth biomass in three typical types of aerobic bioreactors to treat a high strength synthetic wastewater. The results show that sponge thickness deteriorated the organic and nutrient removal and 1cm is the optimum thickness for fixed-bed sponge biofilter (SBF). The sponge volume had sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2015